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I. INTRODUCTION

Missile flight and performance characteristics are investigated using
several different types of testing, including actual flight tests, laboratory
tests of major system components, and computer simulation studies. For example,
in addition to flight tests, extensive laboratory tests of the electronic sub-
systems and wind tunnel tests of the airframe are conducted. Computer simula-
tion models may be used to gain further information about missile performance
variability at a particular set of flight conditions (such as target type,
speed, altitude, and maneuver; environmental factors including windspeed, tem~
perature, and visibility, etec.), or they may be used to explore sets of con-
ditions where no flight tests have been performed. Various types of computer
simulation models have been used in analyzing missile systems, including pure
digital simulators, hybrid digital-analog simulators, and hardware-in-the-loop
simulators.

Model validation is an important aspect of using computer simulation as
part of the test program for a missile system. By validation we mean an
investigation of the consistency of the simulation model with the real missile
system. Successful validation provides a basis for confidence in the model's
results, and is a necessary step if the model is to be used to draw inferences
about the behavior of the real missile. A reasonable definition of validity is
that a set of input conditions to the model should produce output similar to
that produced by the real missile system when it was exposed to the same input.
Consequently, methods for comparing computer simulation model output to data
generated during actual flight tests are typically used for model validation.

This paper is a review of methods useful for validation of computer simu-
lation models of missile systems. Most of these methods discussed are
statistically-based. For other more general discussions of the validation
question, see Naylor and Finger (17), Van Horn (23)(23), and Kheir and Holmes
(12). ‘ _ .

II. VALIDATION METHODOLOGY

Missile performance data may be classified as either static or dynamic.
Examples of static performance data are kill probabilities and terminal miss
distances. Dynamic performance characteristics are output phenomena that vary
continuously during missile flight, such as roll position, roll rate, wing
deflection, system gain and phase, and various guidance system parameters.

These characteristics are usually expressed as time series. We now briefly
describe some of the more important validation techniques, and provide a list of
references that discuss the procedures in more detail.

Static Data Analysis Methods - Many published discussions of simulation
sodel validation focus on static output analysis. Standard statistiocal proce-
dures, such as hypothesis testing methods, confidence intervals, and regression
analysis, can be used in this context. There are also a number of statistical
techniques developed especially for use in the simulation environment.

The specific statistical methodology used depends on the type of simula-
tion model. For example, if Monte Carlo simulation is used, then by the process
of replication using different random number seeds different realizations of the
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output variable, say Xx1,X3,...,%p can be obtained. These cbservations may be
viewed as a random sample from some population f(x) with mean u and variance 022
The sample mean and sample variance x and s2 are unbiased estimators of u and -
02, and if the distribution f£(x) is not too different from the normal distribu-
tion, then relatively standard statistical methods may be used to draw inferen-
ces about these parameters. Thus if x is terminal miss distance, then an
approximate 100 (l-a) percent confidence interval on mean terminal miss distance
is C

: Xty pat/ RSty g8/

where ty/2,n-1 1s the upper a/2 percentage point of the t distribution with n-1
degrees of freedom. Comparison of this confidence interval with design specifi- -
cations or with values observed in flight test may prove helpful in assessing

the validity of the model. For an introduction to statistical methods in data
analysis, see Hines and Montgomery (8), Montgomery (13), and Draper and Smith

(4). An example of the use of statistical methods in simulation model valida-

tion is in Naylor, Wallace and Sasser (18).

When the simulator is nonstochastic or when replication is prohibitively : i
expensive, statistical methods can still be helpful in parameter estimation.
For example, if the simulator produces a sequence of time-oriented observations
on the variable of interest, then one may obtain reasonably good estimates of
. the mean and variance and confidence intervals either by approximating the out-
i put as an autoregressive process and obtaining estimates of the parameters using
f time series methods or by breaking the output stream into k batches and treating
the mean of each batch as a single observation. This latter approach is often
called the method of batch means. For further details, see Fishman (5).

Goodness of Fit Testing - This approach to model validation involves testing the
hypothesis that the entire sample of data generated by a computer simulation :
model has the same probability distribution as the sample of data observed in

the flight test. Thus our attention is now focused on the conformance of the

entire distribution of sample data from the simulation with the flight, and not o
Just on the parameters of these distributions. The two-sample Kolomogorov-

Smirnov test is a distribution-free test that is highly useful in this regard.

For further reading on goodness of fit testing, see Conover (3). T

Goodness of fit testing may often be viewed as an improvement over static
data analysis methods for validation. It is entirely possible that two distribu-
tions have identical sample moments (or means and variances) but differ con-
siderably in shape. Goodness of fit testing is designed to help detect such a ;
situation. Its only weakness is that most goodness of fit tests require inde- !
pendent observations (random samples) and many computer simulations produce out- ;
put streams that are highly autocorrelated. Consequently, this autocorrelation
may render the goodness of fit testing approach less useful.




Time Series Analysis Method - The output variables of interest in many studies
of missile systems is represented by a time series. Let x; be the time series
of interest observed in the actual flight test and y; be the corresponding time
series generated by the computer simulation model, t=1,2,...,T. These time
series are usually highly autocorrelated, and may exhibit other internal struc-
ture (such as non-stationarity, the presence of deterministic components, etc.).
To validate the computer simulation model, we must test the hypothesis that the
two time series x; and yt are equivalent.

A variety of methods can be used to compare the time series x¢ and y¢. In
the validation of missile systems, nonstatistical methods are sometimes used.
The most common method of nonstatistical comparison involves plotting the time
series x; and y¢, overlaying the plots, and sliding them along until as close a
match as possible is obtained. Then the analyst determines subjectively whether
~. . or not the output time series from the simulator agrees with the flight test

results. A major difficulty with this approach is that it does not quantify the -

risk associated with any decision, and it is entirely possible that different
analysts will arrive at different conclusions.

Another nonstatistical procedure sometimes used in validating computer
simulation models is Theil's inequality coefficient (19)(20)(21). This coef-
e - ficient is an index which measures the conformance of one time series with
i another. Theil's inequality coefficient has been extensively used to validate
4 computer simulation models of missile systems (for example, see Kheir and Holmes
(12)). While this procedure is more quantitative than simple visual comparison
of time series, there is no standard distribution theory for Theil's inequality
coefficient, and s0o no statistical statements relative to the conformance of the
two time series can be made. .

i Several statistical methods may be useful in comparing time series. One

: approach is to fit an appropriate stochastic model to x¢ and yi, usually an
autoregressive integrated moving average model (see Box and Jenkins), (2), and
then compare the two models. If the two models are the same, the inference is
that the two time series are the same. A test for the equivalence of two time
series models is described by Hsu and Hunter (10), who also illustrate the use
of the procedure in validating a computer simulation model of an airport.
Unfortunately, the two time series could have been generated by the same
underlying stochastic model and still differ significantly in certain charac-~
teristics, particularly over the relatively short records typically associlated
with time series obtained from missile systems. For example, the two series
could be significantly out of phase, and yet both could have been generated from
the same AR(2) model (say). Furthermore, differences in phase angle, gain and
frequency usually have specific interpretations to the missile designer.

- Therefore, he would like to know if such differences are present.

Spectral methods have been suggested by many authors for validation of
- computer simulation models (6)(14)(18). The general approach consists of com-
paring the sample spectra of the simulation model output and the corresponding
flight test data to infer how well the simulation matches the flight.

The spectrum of a time series x;, say $xx(D), is a decomposition of the

total variance of the series by frequency over the interval 0 < w X ¥. Thus
$xx(®) measures the variance contribution to x¢ at frequency w. The spectrum is
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related to the autocovariance function of a wide-sense stationary time series by
the relationship

4) (w) = YO + 2 Zl Yk cos(wk) | 1)

where {Yk},k=0,1,2,... is the autocovariance function of the time series xg.
Thus the spectrum is the Fourier cosine transform of the autocovariance func-
tion. The spectrum is estimated by the sample spectrum

m
fmc(mj) = Yo + 2 kzl )"kck cos(mjk) (2)

where fyy(w:) is an estimate of the spectrum averaged over a band of frequencies
centered at wa w3j/m, 3=0,1,...,m, m is the number of frequency bands esti-
mated, Ay, t=0,1,...,m are a set of constants or weights, and

Tk - ‘
T-k Z (x x)(xt+k-§), k=1,2,...,m

is the sample autocovariance function. The weights [) i} depend on the type of
spectral window used in the estimation process (see Fuller (7) and Jenkins and
Watts (11)). Spectral windows are employed to give a smoother estimate of the
spectrum.

Let fyy(wj) denote the sample spectrum of the flight test data and fyy(yj)
denote the sample spectrum of the simulation output. To compare these spectra
at a specific frequency construct a 100(1 - o) percent confidence interval on
the ratio of the true spectra, say ¢xx(wj)v using

f(m)/f(); f(w)/f()
14 xx
<O @)/0 () < I -

al2 k,k

j-O 1 2,...,1!

where F p,k,k k 1s the pth percentage point of the F distribution with k = 2T/m
degrees of ' freedom in the numerator and denominator. This succession of con-
fidence intervals at the frequency points wj, j=0,1,...,m is called a confidence

band. If the upper and lower confidence limits contain the value ¢ 4(w 5ﬁ¢21m35

= 1, then we conclude that at that frequency the two time series are ldentical.

For the time series to be identical, their spectra must be equal at all
frequencies wjr J=0,1,...,m. The simultaneous confidence band allows us to
state with a probability at least l-a that all m+l confidence intervals are
simultaneously true. The 100(1-a) percent simultaneous confidence band is com-
puted from
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(4)

For example, if we wished to make the statement that all m+l frequencies are
simultaneously equal with a probability of at most 0.05 (that is, a 95 percent
simultaneous confidence interval), then the probability level associated with
the f-value at each frequency is 0.05/2(m+l) = 0.025/(m+l). Thus if there are
16 bands in the sample spectrum, then

0.025 = 0.00156
16

probability to each tail of the F distribution. Note that the simultaneous con-
fidence band (i) is wider than the single confidence irterval (3) at any fre-
quency. For an application of this methodology to the validation of a computer
simulation model of a missile system, see Montgomery and Conard (1l4).

In constructing confidence intervals, the analyst must specifya, the
Type I error rate. In other words, @ is the probability that we will conclude
that the simulation and flight-test data differ when they really do not. A
reasonable range of values is 0.01 < @ < 0.10. Values of > 0.1 imply that
it is relatively easy to find that the flight test and the simulation differ
when they really do not, while values of & < 0.0l imply that it is easy to
conclude that the flight test and the simulation match when they really do not.
Note that the confidence intervals (3) and (4) become wider as o becomes
smaller. Thus very small values of ¢ make it easier to conclude that the two
time series agree. :

Spectral methods can be applied only to a stationary series. If the series
is nonstationary, then the nonstationary part of the process must be removed,
either by successive differencing or by fitting a polynomial model (or other
appropriate function) to the data and analyzing the residuals. Piecewise poly-
nomial fitting may be necessary when the time series exhibits different behavior
in different local segments of time. This may be conveniently done using
splines. Several useful references are in Draper and Smith (4). Indications of
nonstationarity are usually observed in either the sample autocorrelation func-
tion or the sample spectrum. If the autocorrelation function does not die down
even at very long lags or if the power is concentrated at the lowest frequency
in the spectrum, then the series is probably nonstationary. Note that if two
nonstationary series x; and yy are compared, they are equivalent in a frequency
sense if both their stationary representations have the same spectrum and if the

same level of differencing (or the same order polynomial) is required to reduce
both of them to stationarity.

Internal Validity Checking - While simulation-to-flight test comparisons form
the basis of simulation model validation, it is also usually necessary to vali-
date the internal logic of the simulation model. Spectral methods can be useful
in this aspect of validation also. These techniques can be used to investigate
the interrelationships between two time series generated by the simulator. For
example, suppose that the computer simulation model produces time series output
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of fin deflection and airframe lateral acceleration. The lateral accelerations
are a physical result of the fin deflections and the nonlinear aerodynamic
response of the airframe. Csausal or correlative structure between these two
time series should be reflected in the analysis.

Interrelationships between two time series xy and yy are based on the
cross-spectrum. The cross-covariance function is

'ny(k) = E(xt-ux)(yt-f-k— uy). (5)

where x and y are the means of Xt and y, respectively. Unlike the autocorre-
lation function for a single time series, the cross-correlation function yy(k)
may not be symmetric about zero. The cross-spectrum is defined as

@ =L ~tuk (6)
O RE - kL Ty ()€

Note that xy( ) is a continuous periodic function of {the frequency). Since
(k) may not be symmetric about zero, the cross-spectrum is in general a
complex function, say

¢xy(w) = cxy(m) -1 qu(m). : ~ N

where Cxy( ) is the coincident spectral density (cospectrum) and qyxy( ) is the
quadrature spectral density. Both ( ) and { ) are real-valued functions
of . Cyy( ) is the cosine portion of the transform and is an even function of
» while Qgy( ) is the sine portion of the transform and is an odd funotion of
« Let fxy ) denote an estimate of the cross-spectrum and, let Cxy( ) and
( ) denote the estimates of Cyy( ) and ( ) respeotively. For an introduc-
tion to the esatimation problem see Fuller ?ﬁ and Jenkins and Watts (11).

The squared coherenoy is defined as

1o (w)|? (8)

2
@ " s
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and $yx(w) and ¢yp(w) are the spectra of xt and yi, respectively. The coherency
is analogous to {Ze coefficient of multiple determination R2 in multiple
regression. Thus coherency i1s a measure of independence of x¢ and y. at fre-
quency W. If coherency is 0, then the series are independent (unrelated), while
if coherency is 1, then the series are perfectly dependent (related). Coherency
is a nondimensional measure of the correlation between two time series as a
function of frequency. Another way to think of coherency is in terms of the
predictablility of one series from the other. If coherency is 0, then one series
cannot be predicted from the other, while if coherency is 1, one series can be
perfectly predicted from the other., We may also think of coherency as the pro-
portion of the total power (by frequency) in one time series that can be
explained by the other time series,

An P-test for zero coherency is given by

. A2
4d K

(1] A2
2[1 - xxy(m)]

which if K2xy(w) = 0 is distributed as Fp nq, where d is the number of points at
which the spectrum is estimated, and

2
£ (w)]
ﬁiy () -Tlﬂ—— (10)
f_n(w)fyy(w)

is an estimate of coherency. If Fy > Fy 2,4ds the hypothesis of zero coherency
is rejected. While the limiting values of coherency, 0 and 1, are of obvious
interest, intermediate values are also of interest because of the natural
interpretation of coherency as a "percent variability explained". If the
coherency function is greater than zero dbut less than unity, one or more of
three possibilities exist

1. Extraneous noise is present in the measurements,
2. The system relating x; and y is not linear, or
3. y¢ 1s an output related to the input xi as well as to other inputs.

The gain of y, over x; is defined as

2 2 1/2
A_(w) [C_ (w) +q° (w)] (11)
"HTT' Xy
ny(w) £ (0 Oxx(b)
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The gain behaves like a regression coefficient in the regression of y on x
through the origin, but it is now evaluated at frequency W. That is, gain
measures the increase in amplitude of yy over that of xi at frequencyw.
may construct a 100(1-a) percent confidence interval on gain, using

One

nax{0, & (w) - A} < G (W) < axy(m) + A 2

where

1/2

A= [(2d + 1)_lfxx(m)fzz(m)Fa’2’4d]

~ a2 2 1/2
Axy(m) [ij(w) + qq(m)]

ny(w) = fxx(“’) = fxx(“’)

and

22 2d+1
fzz(w) = fyy(w) [1 Ld ny(m)] 2d

The phase spectrum is defined as
13)
~1
¢xy(w) = tan [-qu(w) /ny(m)]

and estimated by N
~ -.1 ~ ~

$ xy(m) = tan [-qu(w)/cxy(w)]-

: : ()

The phase apectrum shows whether the frequency components in one series lead or
lag the components at the same frequency in the other series. If the coherency
is zero at frequency w, that implies that a 100(1-a) percent confidence interval
on the phase angle is (-m/2, m/2). That is, the average phase difference bet-
ween the two processes is zero, but the phase difference is equally likely to
lie anywhere in the range (-n/2, m/2). If coherency is not zero, then a
100(1-a) percent confidence interval is

by @ - 8 < by @ < 8 ) +6, (15)

10
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where

Generally speaking, the cross correlation structure between two time
series can be adequately described by their squared coherency and phase spectra.
Therefore, it is recommended that internal validity checking concentrate on
these measures.

Screening and Preparation of Data - A potentially frustrating problem for the
data analyst is dealing with wild or unusual observations in either the observed
flight data or the simulation data. These wild or aberrant observations may
severely distort the sample spectrum or estimates of the parameters of the
underlying distributions. Often we find that some type of data editing or pre=-
liminary screening of the data is necessary. i

Two approaches are useful in this regard. The first of these is to smooth
the data with a nonlinear robust filter to eliminate spikey noise. The more
popular nonlinear smoothers are usually based on running medians (see Tukey (22)
and Velleman (25). A second approach is to fit a model to the data that descri-

- bes the smooth portion of the signal. Fitting methods more robust than least

squares are recommended in this approach. It is well-known that least squares is !
severely distorted by outliers. Robust fitting procedures are discussed by
Hogg (9). Agee and Turner (1) describe the use of these methods in prepro-
cessing of missile trajectory data.

Examples - The validation and analysis methodology presented in the previous
sections has been implemented with a FORTRAN IV computer program. This program
and its operation are described in more detail in the Appendix. In this section
we will illustrate the use of the methodology with several examples.

Examples Using Simulated Data ~ In order to check program operation and investi-
gate the effectiveness of the proposed methods, sample time series were
generated from stochastic processes having known spectral properties. The abi-
1lity of the procedure to produce sample spectral estimates matching the popula-
tion values reasonably closely is then investigated.

A plot of two realizations of length 200 from the AR(2) process

X T X1

' 2
a, v NID(O,oa) i
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is shown in Figure 1. The theoretical autocorrelation function and
spectrum are shown in Figure 2. The sample autocorrelation functions for both
realizations are shown in Figures 3 and 4. Both plots exhibit the charac-
teristic pseudocyclic decay associated with the AR(2) process. Figures 5 and 6
present the smoothed spectral estimates for truncation points of m = 8, 16, and
32. At m = 8, the low-frequency power in the series is easily seen, but there
is no indication of the peak. Increasing m to 16 gives some indication of the
peak for both realizations. At m = 32, other peaks occur because of the
increase in variance of the estimate. While it is difficult to obtain a good
estimate of a narrow two-sided peak with a realization of length 200, we
conclude that m = 16 or perhaps m = 24 would be adequate to show the major
features of the spectrum.

A comparison of the two spectra using equations (3) and (4) with a trun-
cation point m = 24 is shown in Table 1. Individual 95 percent confidence
limits on the ratio of the spectra are shown in columns (e) and (f), while the
corresponding simultaneous confidence limits are shown in columns (g) and (h).
The simultaneous confidence limits indicate agreement between the spectra at 21
of the 25 tabulated points, and only one of the four missmatched points
corresponds to a frequency in the spectrum having significant power.
Considering the difficulty in estimating a spectrum with a narrow two-sided
peak, we conclude that there is no strong evidence that the two series are not
realizations of the same underlying stochastic process,

The second simulated example consists of 100 realizations of the bivariate
linear process

xt - O.Gxt_l - 0-57t_1 + at

Ve ™ O.kx_t_l + O.Syt_l + bt
a, ~ NID(O0,1), bt ~ NID(O,1)

described in Jenkins and Watts (11). Both series are plotted in Figure 7. The
sample autocorrelation functions and spectra (with truncation points m = 8, 16
and 32) for xy and yi are shown in Figures 8, 9, 10, and 11, respectively. Note
that although the bivariate process is first order, the autocorrelation function
and spectrum resemble those of a second-order univariate process. Furthermore,
both series have the same general behavior, with a peak or trough in xp followed
by a corresponding peak or trough in y; after one or two observations. This is
confirmed from inspection of the sample cross correlation function shown in
Figure 12, which shows larger spikes at positive lags 1 and 2.

The comparison of the univariate spectra is shown in Table 2, based on the trun-
cation point m = 16, and with a significant level of 95 percent. Inspection of
the simultaneous confiderce limits in columns (g) and (h) reveal that the two
series closely agree.

12




Plot of original series
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TABLE 1
Comparison of Spectra

(a) (b) c) (d) (e) () (g) (h)
FREQ X SPECTRUM Y SPECTRUM RATIO INDIV CI LB INDIV CI UB SIMU CI LB SIMU CI UB
0.000000  1.361527 1.644083 828137 553752 1.238480 RET 1.566946

.020833  1.326784 1.713186 LTT445Y 517856 1.158197 .409302 1.465369
.041667  1.133410 1. 475656 .768072 .513588 1.148652 .405929 1.453293
.062500 .838198 1.453755 576575 .385539 .862268 .304722 1.090956
.083333  1.268663 1.603301 786292 525772 1.175901 415559 1.487769
.184167 1.322648 1.762093 .750612 501913 1.122541 «396702 1.420257
.125000 .889412 1.543782 576126 .385239 861597 304485 1.090106
.145833 .789594 1.718659 459425 .307204 .687070 .242808 .869292
.166667  1.125775 1.173977 .958941 641217 1.434097 506804 1.814443
.187500 .899432 .660522 1.361699 .910530 2.036423 .719664 2.576515
.208333 .656709 415672 1.579871 1.05641¢ 2.362699 .834968 2.989325
.229167 401155 196577 2.035109 1.360821 3.043508 1.075564 3.850696
.250000 .236488 155779 1.517973 1.015026 2.270131 - .802255 2.872206
.270833 .272040 .128775 2.112519 1.412583 3.159275 1.116475 3.997166
.291667 .192898 .090467 2.132247 1.425774 3.188778 1.126901 4,03449Y
312500 076704 056107 1.367091 .914135 2.084486 +722513 2.586717
333333 .067223 .079530 845254 .565198 1.264078 .4u6720 1.599332
.354167 .089081 .100406 .887214 .593255 1.326830 .4168896 1.678727
375000 .089630 056462 1.587u41 1.061478 2.374021 .838969 3.003650
.395833 .088248 .046995 1.877841 1.255660 2.808313 .992u47 3.553124
416667 .087765 .04g912 1.758406 1.175797 2.629699 .929325 3.327138
437500 .091341 .059653 1.531198 1.023869 2.289909 .8092u4 2.897230
.1458333 076655 .064972 .902116 .603221 1.349118 LT6773 1.700728
179167 056912 .078205 727736 486617 1.088330 .301611 1.376972
500000 .051164 .049253 1.038801 .694617 1.553528 L4910 i,965549
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TABLE 2

Comparison of Spectra
(a) (b) (c) (d) (e) (f) (g) (h)
FREQ X SPECTRUM Y SPECTRUM RATIO INDIV CI LB INDIV CT UB SIMU CI LE SIMU CI UB
0.000000 .851506 1.079992 788315 480849 1.2920479 370523 1.677326
.031250 1.014157 1.208320 .839311 .511936 1.376038 394477 1.785765
.062500 1.339823 1.366438 .980522 .598067 1.607551 460846 2.086213
.093750 1.727075 1.436993 1.201867 .733076 1.970443 564879 2.557159
.125000 1.516686 1.270897 1.193398 .727910 1.956558 .560898 2.539139
.156250 .916654 881212 1.089683 - .664650 1.786519 512152 2.318470
.187500 .897975 .591308 1.518624 .926281 2.489762 .T13755 3.231109
.218750 .809345 LU4TU889 1.704283 1.039523 2.794147 .801015 3.626128
.250000 443885 .287546 1.543914 941706 2.531224 .725641 3.284916
.281250 .280113 .182383 1.535845 .936785 2.517994 .7218u8 3.267748
.312500 .179058 .138035 1.297416 .791355 2.127094 .609786 2.760453
.343750 .173903 .218852 .794613 .4Bu6T2 1.302756 .373469 1.690663
.375000 .191589 . 194449 .985295 .600978 1.615376 .463089 2.096367
406250 .183002 .151299 1.209537 737754 1.983018 .568484 2.573478
437500 .168183 .188995 .889878 542779 1.458942 18244 1.893354
468750 .151892 .181256 .837998 511135 1.373884 .393860 1.782970
.500000 .125002 122926 1.016882 .620245 1.667163 477935 2.163574
Fa )
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The cross correlative nature of the two series can be investigated by
decomposing the cross spectrum into squared coherency and phase components. The
theoretical coherency and phase spectra for the bivariate linear process are
shown in Figure 13. Figures 14 and 15 show the corresponding sample spectra.
The sample coherency spectrum in Figure 14, based on a truncation point of m =
16, shows reasonably stable behavior and agrees closely with the theoretical
spectrum. The most important features of the coherency spectrum is the single
large peak and the tendency toward zero at both low and high frequencies. Thus,
the majority of the correlation between the two series is centered in the mid-
range frequencies. The sample phase spectrum, Figure 15, shows good agreement
with the theoretical phase spectrum. The phase spectrum shows that low fre-
quency components of xy lag those of yy by approximately 90 degrees but that
the phase difference tends to zero at higher frequencies.

An Example Using Real Data - We will now illustrate simulation model validation
using time series data from a control variable for a typical missile. Figure 16
presents 800 realizations of simulation data (dashed line) and flight test data
(solid line). The visual impression is that both series agree closely. The
autocorrelation functions and spectra, shown in Figures 17, 18, 19, and 20 are
typical of those associated with AR(2) processes. Fach spectra is computed
using truncation points of m = 8, 16, and 32. There is evidence of a narrow
peak in the low frequency range.

Table 3 presents the statistical comparison of the spectra for a trun-
cation point of m = 32. The 95 percent simultaneous confidence limits, shown in
columns (g) and (h), indicate that at all points in the spectrum containing
significant power there is good agreement between the simulation and flight test
data. The only simultaneous confidence limits that do not include one are at
higher frequencies where the power is low. We conclude that the simulation
model and the flight test data are substantially equivalent.
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Figure 13. (a) Theoretical Squared Coherency Spectrum and

(b) Phase Spectrum for the Bivariate Linear Process.
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Phase of the cross spectrum
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Plot of original series
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Plot of autocorrelations
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TABLE 3
Comparison of Spectra
(a) b) (c) (d) (e) (r) (g) (h)
FREQ X SPECTRUM Y SPECTRUM RATIO INDIV CI LB INDIV CI UB_SIMU CI LB__ SIMU CI UB
0.000000  5.732832 5.642977 1.015852 717275 1.438717 .577091  1.788205
.015625  5.737348 5.688931 1.008511 .712091'  1.428319 572920  1.775281
.031250  7.760088 7.678939 1.010568 .713544  1,431233 .5TH088  1.778902
.0l46875 11.245462 10.983929 1.023811 722894 1.449988 581611 1.802213
.062500  14.743461  14,.166088 1.040757 .734860  1.473989 59123 1.832045
.078125 13.336826  12.569905 1.061012 749162  1.502676 .602745  1.86770
.093750  10.872416 9.949193 1.092794 J171602  1.547687 .620800  1.923645
.109375 12.208082  10.739831  1.136711 .802611  1.609885 .645T48  2,000952
.12500  12.06603%  10.281119 1.173611 .828666  1.662145 666711  2.065907
.140625  7.427049 6.099890 1.217571 .859705  1.72uh0Y .691684  2.143290
.156250  4,282530 3.345625 1.280039 .903812  1,812875 27171 2,253252
171875  2.856734 2.104529 1.357422 .958451  1.922471 71131 2.389470
.187500  1.866200 1.294401 1.441747 1.017992  2.041898 .819035  2.537908
.203125  1.212969 782643 1.549838 1.094312  2,194982 .880440  2.728179
.218750 .823493 .495703 1.661261 1.172987  2.352788 .943738  2.924318
234375 .62677H «339631 1.845453 1.303041 2.613653 1.048374 3.248551
250000 .620323 .307346 2.018323 1.425102  2.858482 1.146579  3.552853
.265625 .693298 .305548 2.269033 1.602123  3.213554 1.289004  3.994178
.281250 558139 .232748 2.398043 1.693215  3.396266 1.362292  4.221274
.296875 .342962 .124896 2.745978 1.938886  3.889035 1.559949  4,.833745
312500 .287230 .096847 2.965808 2.094104 4,200374 1.684831 5.220712
.328125 .247898 .066223 3.743357 2.643117  5.301589 2.126545  6.5891430
.343750 .232529 057772 .024955 2.841948  5,700406 2.286517  7.085127
359375 .187192 .036992 5.060399 3.573057  7.166871 2.874737  8.907819
.375000 .177687 .033696 5.273248 3.723345  7.468321 2.995653  9.282496
390625 .180469 .019926 9.056866 6.394890' 12.826931 5.145070  15.942798
1406250 .152544 .017450 9,314790 6.577006 13.192221 5.291593  16.396823
421875 .135968 .005899  23.050089 16.275253 32.645058  13.094411  40.575066
437500 .157999 .010196  15.495962 10.941420  21.946405 8.803025 27.277539
453125 .121465 .002200  55,201096 38.976502 78.179438  31.358918  97.170475
468750 122542 .005398  22,701789 16.029325 32.151774  12.896548  39.961954
484375 .108422 0.000000  22,701789 16.029325 32.151774  12.896548  39.961954
.500000 .098980 .003867 25.596934 18.073535 36.252068 14.541236  45.058276
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APPENDIX
COMPUTER PROGRAMS

The COMP Programs were written in FORTRAN IV extended for implementation
on the CDC CYBER 74, utilizing a Tektronix 4014 Graphics Terminal. Routines
from the International Mathematical and Statistical Libraries (IMSL) and the
Directorate for Management Information Systems (DMIS) General Purpose Computer
Subroutines (ALTLIB) augment the standard CDC Library Routines. The programs
were designed to be run in the interactive mode with a minimum core requirement
of 110000g.

The first program, COMPl, is a preprocessor. Using it, the analyst may
determine the "best" set of conditions (smoothing, differencing, window size,
etc.) for running the full spectral analysis program. COMPl plots the original
series and calculates the autocorrelations. Depending on the interactive com-
mands, one or both of the following options may be selected,

(1) smooth the data using either a running median scheme or a median/
hamming technique

(2) difference or fit a curvilinear regression model to original or
smoothed series.

The spectrum for the original series, the differenced or the residuals from the
curvilinear fit is then calculated and plotted.

A hamming window is used for the spectrum calculations. Three spectral

window sizes (eg. 8, 16, 32) are allowed. The curvilinear regression routine,
as set-up in COMPl, fits a model of the form

2
Ye =By ¥ B,t + Bt + Bz, + a;

where

t-tk -t > t*

and t* is the t value at which a change in the curve is observed.

This program calculates the Durbin-Watson statistic, the basis of a test
of autocorrelation in regression analysis (see Draper and Smith) (i), In addi-
tion, the value of Theil's Inequality Coefficient (TIC) along with Measures for
use in determining if the difference between the two series is a result of a
time lag, scale or bias error are provided.
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The second and third programs, COMF2 and COMP3, are run, using the
experience gained from running COMPl, for the full spectral analysis. COMP3
makes the same calculations as COMPl and calculates both the 100(1-a) percent
individual and simultaneous confidence intervals on the ratio of the true
spectra, the coherency function, the cross spectra, phase and gain. This
program is particularly useful when comparing series for some causal rela-
tionship. 1If there 1s no interest in the interrelationship between the two
series one may run COMP2. COMP2 does not output the cross spectral results.

Input to these programs is from the disc (TAPEl, TAPE 2, TAPE 3) and the
console. TAPE 1 and TAPE 2 are data files. TAPE 3 contains the labels to be
used with the graphies, the format for reading the data files, etc. The
following is an example of the structure of TAPE 3:

0 0. o
(F14.8)
LAG AUTOCORRELATION FREQUENCY SPECTRUM
MAGNITUDE SERIES TIME COHERENCY
PLOT OF AUTOCORRELATIONS PLOT OF ORIGINAL SERIES
PLOT OF DIFF/DETREND SERIES SPECTRUM OF SERIES 1 AND 2
CROSS SPECTRUM OF THE SERIES PHASE OF THE CROSS SPECTRUM
PLOT OF GAIN PLOT OF COHERENCY
RECORD 1 ;
ISKIP, XSTAR 110, F10.0 '
RECORD 2
DFORM 8Al10
RECORD 3
AL1l, AL2, AL3, ALY 8A10
RECORD %
AL5, AL6, AL7, ALS 8A10
RECORD 5 :
TITL1, TITL2 6A10
RECORD 6 ‘
TITL3, TITLY 6410
RECORD 7
TITLS, TITL6 6A10
RECORD 8
TITL7, TITL8 6410
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ISKIP
XSTAR

DFORM

ISIZE

XY

ISM

ICNT

ID
AL1,AL2,...,AL8
TITL1,...,TITLS

Output

LIST OF INPUT VARIABLE NAMES

Number of RECORDS to skip on the data files

Regression breakpoint

Format for reading the data files

Number of variables in the data for each series, NV is L.E.2
Number of observations for each variable ISIZE is L.E. 250
NV x 250 data arrays

Number of the variable to compare

Smoothing indicator, 1 = YES, 0 = NO

Type smoothing, 1 = MEDIAN, 2 = MED/HAMMING

Number of autocorrelations to compute or number of lags
for FTFREQ

Difference/spectra plot/analysis complete indicator
Labels for ABSCISSA and ordinate of plots

Titles for plots

is both printed format on file output and special graphics.
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